(1-1) Words and Expressions

Numerical Expressions contain a combination of numbers and operations

Equation - number sentence with an equal sign Expression - does not have an equal sign

Most expressions translate in the same order they are written:
Three plus eight --- $3+8$
Four divided by 7 --- $\frac{4}{7}$

Add	Subtract	Multiply	Divide		
Sum Total	Minus Infference In all combined	Product How much more?	Qumes Same cost for each		Divient by
:---					
Equally shared					

- use fraction line to say "divided by"
twenty-three divided by eight ----- $\frac{23}{8}$
- use ""0" or () to show multiplication
five times $21-\cdots--5 \cdot 21$ or $5(21)$
"Flip phrases" - the order is switched Two LESS THAN 5 --- $\mathbf{5 - 2}$
8 SUBTRACTED FROM 78 --- 78-8
5 DIVIDED INTO 35 --- $\frac{35}{5}$
12 GREATER THAN 23 --- 23+12
5 times the sum (use parenthesis) of 8 and 3 $5(8+3)$
$4 \underline{\text { more than (nip) }}$ the product of 3 and 9
(39) +4

(1-1) Order of Operations pt. 2

- SHOW ALL STEPS
- ONE CHANGE PER STEP

Graciously $E_{\text {xcuse }} M_{y} D_{\text {ear }} \quad A_{\text {unt }} S_{\text {ally }}$
Grouping Symbols $E_{\text {xponents }} M_{\text {ultiply }} D_{\text {ivide }} A_{\text {dd }} S_{\text {ubtract }}$

1) Do what is in the grouping symbols first-working inside out
2) Exponents next
3) Multiplication and/or division - work from left to right
4) Addition and/or subtraction - work from left to right
. Underline the part you are doing

- Write the answer underneath
- Bring down everything else

6(4) ---- means "6 times 4"
$6 \bullet 4$---- means " 6 times 4"
Evaluate - means to find the value or solve
When you have a fraction, and there is/are operations in the numerator and/or denominator, you have to treat the numerator and denominator as separate parts (follow order of operations for each). Then divide.

$$
\begin{gathered}
\frac{13+5}{3^{2}} \\
\frac{18}{9}
\end{gathered}
$$

Try these: 1. 12-3(4)

$$
\begin{array}{ll}
\text { 2. } & 3[(20-7)+1] \\
\text { 3. } & \frac{34+18}{27-14} \\
\text { 4. } & \left(4^{2}+4\right) \div 4 \\
\text { 5. } & 6\left[1+(5-2)^{2}\right] \\
\text { 6. } & 5^{2}-4 \cdot 3+1
\end{array}
$$

1-2 Variable and Expressions

Variables - letters that represent numbers

- must be lower case

Expressions - phrases that contain at least one operation
mathematical/numerical expression algebraic expression

$$
6+23(4+8) \quad 3 \mathrm{ab}-\mathrm{c}
$$

Evaluate - find the value of
Coefficient - the number you are multiplying by a variable ($6 x-" 6$ " is the numerical coefficient
$\frac{x}{2} \quad \frac{1}{2}$ is the numerical coefficient; with x the coefficients is 1)
Substitution - replacing a variable with a number

Open Sentence - number sentence with a variable

Equation - number sentence with an equal sign
Solution - value that makes a number sentence true $3 \mathrm{a}=21$ the solution is $\mathrm{a}=7$

Consecutive - right in a row, in order. 1,2,3 are consecutive numbers. 2,4,6 are consecutive EVEN \#.

"is" means "="

Comma vs no comma - comma separates different parts of an expression. No comma, no pause

The sum of a number n and a number b , times 15

$$
15(\mathrm{n}+\mathrm{b})
$$

The sum of a number n and a number b times 15

1. A number t increased by 9

$$
t+9
$$

2. sixteen less than a number x

$$
x-16
$$

3. the quotient of a number x decreased by twelve, and forty

$$
\frac{x-12}{40}
$$

4. the product of sixteen and the sum of five and a number r

$$
16(5+\mathrm{r})
$$

5. sixteen less than a number s

$$
s-16
$$

Try These:

1. The product of eight and a number b
2. A number q divided by sixteen
3. A number k less twenty-seven
4. the quotient when a number d is divided by eleven
5. the difference when a number a is subtracted from b
6. A number r divided by the difference of 83 and 10
7. the sum of a number y and 10 , divided by the difference of x and 5
8. the value of cents in y nickels (cents = no decimal)
9. The greatest of three consecutive even numbers following the even number x

$$
(x+2, x+4, x+6)
$$

10. the product of 18 less than a number b and the sum of 22 and 45
11. 8 b
12. $\frac{q}{16}$
13. $\mathrm{k}-27$ 4. $\frac{d}{11}$
14. $b-a$
15. $\frac{r}{83-10} \quad$ 7. $\frac{y+10}{x-5}$
16. $5 y$
17. $\mathrm{x}+6$
18. $(b-18)(22+45)$

1-2 Variables and Expressions with Substitution

STEP 1 - REPLACE variables with numbers (no solving yet!!) rewrite the problem!!!
STEP 2, 3... solve using order of operations

EXAMPLES: $m=4, n=3, p=2$

	$7 m-3 p$	$2 p+p^{2}$	$(m-p) n$	$(m-p)^{3}$
Step $1 \rightarrow$	7(4)-3(2)	$2(2)+2^{2}$	$(4-2) 3$	$(4-2)^{3}$
	28-6	$4+4$	(2) 3	2^{3}
	22	8	6	8

When showing multiplication, the coefficient is
ALWAYS written before the variable with no
symbols in between: $6 a, 12 x, 8 b$
$\mathbf{N O T} \longrightarrow a 6 \quad 6 \sqcup a \quad b 8 \quad x 12$

Try These:
Evaluate each expression if $\quad a=7 \quad b=6 \quad c=4 \quad d=3$
7. $3 a+4 b-2 d$
8. $a b c \div 21$
9. $(3 b+2 c) d$
10. $3 b+(2 c d)$
11. $c d^{2}$
12. $(c d)^{2}$
(1-2) More...Evaluating and Writing Expressions
Inequality - a number sentence containing

$$
\begin{aligned}
& >(\text { greater than }) \\
& \geq(\text { greater than or equal to }) \\
& <(\text { less than }) \\
& \leq(\text { less than or equal to })
\end{aligned}
$$

Write an equation or inequality for the verbal phrase:
Twice a number x is less than or equal to 14

$$
2 x \leq 14
$$

Thirty-five is sixteen more than a number t

$$
35=t+16
$$

"is" means " $=$ "

The product of 5 and the difference of r and 10 is greater than 40

$$
5(r-10)>40
$$

The sum of a number and 3 times the number is greater than or equal to $26 \quad x+3 \geq 26$

Try these:

1) The sum of a number m and six is greater than 15
2) A number decreased on one is less than 5
3) Twice a number, divided by 3 , is fifteen
4) The product of a and the difference of 6 minus 1 is equal to a
5) The sum of z and 17 is les than the difference of 21 minus z
6) Two increased by 8 times a number is equal t the number divided by 5
7) The product of y and ten, decreased by 6
8) The difference when the product of a number and 3 is subtraced from 30 is greater than or equal to the number increased by 10
1. $m+6>15$
2. $x-1<5$
3. $\frac{2 x}{3}=15$
4. $a(6-1)=a$
5. $z+17<21-z$
6. $2+8 x=\frac{x}{5}$
7. $10 y-6$
8. $30-3 x \geq x+10$

(1-3) Properties

Commutative Property (+) and (x) - the order in which numbers are added or multiplied does not change the sum or product. Numbers move

$$
\begin{array}{cc}
a+b=b+a & a b=b a \\
7+4=4+7 & 7(2)=2(7)
\end{array}
$$

Associative Property (+) and (x) - the way in which numbers are grouped does not change the sum or product. Parenthesis move, numbers don't move

$$
\begin{aligned}
(a+b)+c=a+(b+c) & (a b) c=a(b c) \\
(3+1)+6=3+(1+6) & (4 \cdot 2) 6=4(2 \cdot 6)
\end{aligned}
$$

Additive Identity - when 0 Is added to any number, the sum is the number.

$$
a+0=a \quad \begin{aligned}
& 8+0=8 \\
& 0+8=8
\end{aligned}
$$

Multiplicative Identity - when any number is multiplied by $\mathbf{1}$, the product is the number.

$$
a \cdot 1=a \quad \begin{aligned}
& 4 \cdot 1=4 \\
& 1 \cdot 4=4
\end{aligned}
$$

Multiplicative Property of Zero When any number is multiplied by 0 , the product is 0 .

$$
a \cdot 0=0 \quad \begin{aligned}
& 6 \cdot 0=0 \\
& 0 \cdot 6=0
\end{aligned}
$$

Distributive Property - to multiply a sum or
difference by a number, multiply each term inside the parentheses by the number outside the parentheses.
$a(b+c)=a b+a c \quad a(b-c)=a b-a c$
$4(7+3)=4(7)+4(3) \quad 4(7-3)=4(7)-4(3)$

Name the Property

1. $7.6+0=0+7.6$
2. $(19 \cdot 3) 6.2=19(3 \cdot 6.2)$
3. $5(9+8)=(5 \cdot 9)+(5 \cdot 8)$
4. $6+(1.2+0.8)=(1.2+0.8)+6$

True or False
A) $3.84+(6.73+3.77)+2.1=3.84+10.5+2.1$
B) $(3+12) 6=(3 \cdot 6)+(12 \cdot 6)$
C) $9(15.1-6.3)=(9 \cdot 15.1)+(9 \cdot 6.3)$

Complete. Name the property.
A) $6 \cdot \square=7 \cdot 6$
B) $5(4+2)=(5 \cdot 4)+(\square \cdot 2)$
C) $(3 \cdot \square) 9=3(8 \cdot 9)$

(1-3) Properties - part II

Coefficient - the number by which you are multiplying a vairaible. $6 x$ (6 is the coefficient)
$\frac{3 x}{4} \quad \frac{3}{4} \quad$ is the coefficient

To simplify expressions:
When multiplying two terms with coefficients and variables, multiply the numbers, keep the variable the same.
$3 x(4)$
$12 x$

$16 t$
$21 n(0)$
0

Addition with numbers and variables:

$$
3+x+9 \quad x+9+6 \quad 2 x+6+5 x+8
$$

You can add the numbers, you can add the coefficients of the variables, but you can't combine the two.

$$
\begin{array}{ccc}
3+x+9 & x+9+6 & 2 x+6+5 x+8 \\
x+12 & x+15 & 7 x+14
\end{array}
$$

Math Manners: when you have terms with variables and terms without, your final answer should have the variable + number (in that order)

$$
\begin{array}{ll}
3+\mathrm{x}+9 & \mathrm{x}+9+6 \\
x+12(\operatorname{not} 12+x) & \mathrm{x}+15(\operatorname{not} 15+\mathrm{x})
\end{array}
$$

p. 21 \#17-36

(1-4) Coordinate Plane

- Personal tutor introduction

A coordinate plane is a mathematical system used to identify locations.

- On a coordinate plane, two number lines are drawn perpendicular to each other.
- The horizontal number line is the x -axis.
- The vertical number line is the \mathbf{y}-axis.

- An ordered pair is a set of two numbers (x, y) where the x is the x -coordinate and the y is the y -coordinate.

Origin - point at which the x and y axis intersect. The ordered pair for the origin is $(0,0)$

Write the ordered pair that names point D.
Step 1 Start at the origin.
Step 2 Move right on the x-axis to find the x-coordinate

Step 3 Move up the y-axis to find the y coordinate

The ordered pair for point D is $(1,4)$.

Graph an ordered pair.

Step 1 Start at the origin.
Step 2 Since the x-coordinate is 4 , move 4 units to the right.
Step 3 Since the y-coordinate is 3 , move 3 units up. Draw a dot.

Ordered pairs must have parenthesis and a comma between the points.

A relation is a set of ordered pairs.
You must use $\}$ to show the set
A relation can also be shown in a table or graph.
The set of x-coordinates is the domain.
The set of y-coordinates is the range.

Express the relation $\{(0,0),(2,1),(4,2),(3,5)\}$ as a table and as a graph. Then determine the domain and range.

x	y
0	0
2	1
4	2
3	5

The domain is $\{0,2,4,3\}$, and the range is $\{0,1,2,5\}$.

(1-5) Words, Equations, Tables, and Graphs

- Function - relationship where one thing depends on another
- Function Rule - gives the operation performed on the input
- Function Table - a way to organize the input numbers, output numbers, and the function rule
- Domain - the set of input values (shown inside "set" symbols
* Range - the set of output values (shown inside "set" symbols
- Equation - a mathematical sentence stating that two quantities are equal.
Functions are often written as equations with two variables-one to represent the input and one to represent the output.

Complete the following function table; then state the domain and range.
The team scores 6 points for each touchdown.

Input		
(x)	Rule: 6 x	(Output) y
1	$6(1)$	6
2	$6(2)$	12
3	$6(3)$	18
4	$6(4)$	24

> Domain: $\{1,2,3,4\}$
> Range: $\{6,12,18,24\}$

[^0]Suppose a student movie ticket costs $\$ 4$. Using two variables, write an equation to show the relationship between the number of tickets and the total cost.

Equation: ???
Make a function table that shows the total cost for $1,2,3$ and 4 tickets. Then identify the domain and range.

Domain: \qquad
Range:

Page 35 \#1-7

[^0]: 1-5 Words,Eqations, Tables and Graphs

