# (1-1) Words and Expressions

Numerical Expressions contain a combination of numbers and operations

**Equation** – number sentence with an equal sign **Expression** – does not have an equal sign

Most expressions translate in the same order they are written:

Three plus eight --- 3 + 8Four divided by 7 ---  $\frac{4}{7}$ 

| Add      | Subtract   | Multiply  | Divide         |
|----------|------------|-----------|----------------|
| Sum      | Minus      | Product   | Quotient       |
| Total    | Difference | Times     | Divided by     |
| In all   | How much   | Same cost | Equally shared |
| combined | more?      | for each  |                |



"Flip phrases" – the order is switched Two LESS THAN 5 --- 5-2 8 SUBTRACTED FROM 78 --- 78-8 5 DIVIDED INTO  $35 ---\frac{35}{5}$ 12 GREATER THAN 23 --- 23+12

5 times the sum (use parenthesis) of 8 and 3 5(8+3)4 <u>more than</u> (flip) the product of 3 and 9  $(3 \sqcup 9) + 4$ 

## (1-1) Order of Operations pt. 2

- SHOW ALL STEPS
- ONE CHANGE PER STEP

## Graciously Excuse My Dear Aunt Sally Grouping Symbols Exponents Multiply Divide Add Subtract

- 1) Do what is in the grouping symbols first-working inside out
- 2) Exponents next
- 3) Multiplication and/or division work from left to right
- 4) Addition and/or subtraction work from left to right
  - Underline the part you are doing
  - Write the answer underneath
  - · Bring down everything else





When you have a fraction, and there is/are operations in the numerator and/or denominator, you have to treat the numerator and denominator as separate parts (follow order of operations for each). Then divide.

$$\frac{13+5}{3^2}$$
$$\frac{18}{9}$$
$$2$$

Try these: 1. 
$$12-3(4)$$
  
2.  $3[(20-7)+1]$   
3.  $\frac{34+18}{27-14}$   
4.  $(4^2+4) \div 4$   
5.  $6[1+(5-2)^2]$   
6.  $5^2-4\square +1$ 

### **1-2 Variable and Expressions**

Variables – letters that represent numbers - must be lower case

Expressions– phrases that contain at least one<br/>operationmathematical/numerical expressionalgebraic expression<br/>3ab - c

Evaluate – find the value of

 $\frac{\text{Coefficient}}{2} - \text{the number you are multiplying by a variable} \quad (6x-``6`' is the numerical coefficient$  $<math>\frac{x}{2} = \frac{1}{2}$  is the numerical coefficient; with *x* the coefficients is 1)

Substitution – replacing a variable with a number

Open Sentence – number sentence with a variable

Equation – number sentence with an equal sign

<u>Solution</u> – value that makes a number sentence true 3a = 21 the solution is a = 7

<u>Consecutive</u> – right in a row, in order. 1,2,3 are consecutive numbers. 2,4,6 are consecutive EVEN #.

#### "is" means "="



Try These:

- 1. The product of eight and a number b
- 2. A number q divided by sixteen
- 3. A number k less twenty-seven
- 4. the quotient when a number d is divided by eleven
- 5. the difference when a number a is subtracted from b
- 6. A number r divided by the difference of 83 and 10
- 7. the sum of a number y and 10, divided by the difference of x and 5
- 8. the value of cents in y nickels (cents = no decimal)
- 9. The greatest of three consecutive even numbers following the even number x (x+2, x+4, x+6)
- 10. the **product** of <u>18 less than a number b</u> **and** <u>the</u> <u>sum of 22 and 45</u>

1. 
$$8b$$
 2.  $\frac{q}{16}$  3.  $k - 27$  4.  $\frac{d}{11}$  5.  $b - a$   
6.  $\frac{r}{83 - 10}$  7.  $\frac{y + 10}{x - 5}$  8.  $5y$  9.  $x + 6$  10.  $(b - 18)(22 + 45)$ 

### **1-2 Variables and Expressions with Substitution**

STEP 1 – REPLACE variables with numbers (no solving yet!!) REWRITE THE PROBLEM!!!
STEP 2, 3... solve using order of operations

EXAMPLES: m = 4, n = 3, p = 2

|          | 7m-3p       | $2p + p^2$   | (m-p)n | $(m-p)^3$   |
|----------|-------------|--------------|--------|-------------|
| Step 1 🔶 | 7(4) - 3(2) | $2(2)+2^{2}$ | (4-2)3 | $(4-2)^{3}$ |
|          | 28 - 6      | 4 + 4        | (2)3   | $2^3$       |
| _        | 22          | 8            | 6      | 8           |

When showing multiplication, the coefficient is <u>ALWAYS</u> written before the variable with no symbols in between: 6a, 12x, 8bNOT  $\rightarrow a6$   $6 \sqcup a$  b8 x12

Try These: Evaluate each expression if a = 7 b=6 c=4 d=3

7. 
$$3a + 4b - 2d$$
 8.  $abc \div 21$  9.  $(3b+2c)d$ 

10. 
$$3b + (2cd)$$
 11.  $cd^2$  12.  $(cd)^2$ 

(1-2) More...Evaluating and Writing Expressions

Inequality – a number sentence containing >(greater than)  $\geq (greater than or equal to)$  <(less than) $\leq (less than or equal to)$ 

Write an equation or inequality for the verbal phrase:

Twice a number x is less than or equal to 14

$$2x \le 14$$

Thirty-five is sixteen more than a number t

$$35 = t + 16$$

"is" means "="

The product of 5 and the difference of r and 10 is

greater than 40 
$$5(r-10) > 40$$

The sum of a number and 3 times the number is greater than or equal to 26  $x+3 \ge 26$ 

Try these:

- The sum of a number m and six is greater than
   15
- 2) A number decreased on one is less than 5
- 3) Twice a number, divided by 3, is fifteen
- 4) The product of a and the difference of 6 minus1 is equal to a
- The sum of z and 17 is les than the difference of 21 minus z
- 6) Two increased by 8 times a number is equal t the number divided by 5
- 7) The product of y and ten, decreased by 6
- The difference when the product of a number and 3 is subtraced from 30 is greater than or equal to the number increased by 10
- 1. m+6>155. z+17<21-z2. x-1<56.  $2+8x = \frac{x}{5}$ 3.  $\frac{2x}{3}=15$ 7. 10y-64. a(6-1)=a8.  $30-3x \ge x+10$

## (1-3) **Properties**

Commutative Property (+) and (x) – the order in which numbers are added or multiplied does not change the sum or product. Numbers move

| a+b=b+a       | ab = ba     |
|---------------|-------------|
| 7 + 4 = 4 + 7 | 7(2) = 2(7) |

Associative Property (+) and (x) – the way in which numbers are grouped does not change the sum or product. Parenthesis move, numbers don't move

| (a+b)+c=a+(b+c) | (ab)c = a(bc)               |
|-----------------|-----------------------------|
| (3+1)+6=3+(1+6) | $(4\cdot 2)6 = 4(2\cdot 6)$ |

**<u>Additive Identity</u>** – when **0 Is added** to any number, the sum is the number.

$$a + 0 = a$$
  
 $0 + 8 = 8$ 

Multiplicative Identity – when any number is multiplied by 1, the product is the number.

Multiplicative Property of Zero When any number is multiplied by 0, the product is 0.

 $a \cdot 0 = 0 \qquad \qquad 6 \cdot 0 = 0 \\ 0 \cdot 6 = 0$ 

**Distributive Property**– to multiply a sum ordifference by a number, multiply each term inside theparentheses by the number outside the parentheses.a(b+c) = ab + aca(b+c) = ab + ac4(7+3) = 4(7) + 4(3)4(7-3) = 4(7) - 4(3)

### Name the Property

1. 
$$7.6 + 0 = 0 + 7.6$$
  
2.  $(19 \cdot 3) \ 6.2 = 19 \ (3 \cdot 6.2)$   
3.  $5 \ (9 + 8) = (5 \cdot 9) + (5 \cdot 8)$ 

4. 6 + (1.2 + 0.8) = (1.2 + 0.8) + 6

#### True or False

- A) 3.84 + (6.73 + 3.77) + 2.1 = 3.84 + 10.5 + 2.1
- B)  $(3+12) 6 = (3 \cdot 6) + (12 \cdot 6)$
- C) 9 (15.1 6.3) = (9 15.1) + (9 6.3)

#### Complete. <u>Name the property</u>.

A) 
$$6 \cdot [] = 7 \cdot 6$$
  
B)  $5(4+2) = (5 \cdot 4) + ([] \cdot 2)$   
C)  $(3 \cdot []) 9 = 3(8 \cdot 9)$ 

(1-3) Properties – part II Coefficient – the number by which you are multiplying a vairaible. 6x (6 is the coefficient)  $\frac{3x}{4}$   $\frac{3}{4}$  is the coefficient

#### To simplify expressions:

When multiplying two terms with coefficients and variables, multiply the numbers, keep the variable the same.

| 3x(4)       | 4(4)(t)     | 21 <i>n</i> (0) |
|-------------|-------------|-----------------|
| 12 <i>x</i> | 16 <i>t</i> | 0               |

Addition with numbers and variables: 3 + x + 9 x + 9 + 6 2x + 6 + 5x + 8

You can add the numbers, you can add the coefficients of the variables , but you can't combine the two.

| 3 + x + 9 | x + 9 + 6 | 2x + 6 + 5x + 8 |
|-----------|-----------|-----------------|
| x + 12    | x + 15    | 7x + 14         |

Math Manners: when you have terms with variables and terms without, your final answer should have the variable + number (in that order)

| 3 + x + 9              | x + 9 + 6              |
|------------------------|------------------------|
| $x + 12 \pmod{12 + x}$ | x + 15 (not $15 + x$ ) |

p. 21 #17-36

### (1-4) <u>Coordinate Plane</u>

#### Personal tutor introduction

A coordinate plane is a mathematical system used to identify locations.

- On a coordinate plane, two number lines are drawn perpendicular to each other.
- ► The **horizontal** number line is the **x-axis**.
- ► The **vertical** number line is the **y-axis**.



An <u>ordered pair</u> is a set of two numbers (x,y) where the x is the x-coordinate and the y is the y-coordinate.

**Origin** - point at which the x and y axis intersect. The ordered pair for the origin is(0,0)

#### Write the ordered pair that names point D.

- Step 1 Start at the origin.
- Step 2 Move right on the x-axis to find the x-coordinate
- Step 3 Move up the y-axis to find the ycoordinate.

The ordered pair for point D is (1, 4).

#### Graph an ordered pair.

- Step 1 Start at the origin.
- Step 2 Since the x-coordinate is 4, move 4 units to the right.
- Step 3 Since the y-coordinate is 3, move 3 units up. Draw a dot.

## Ordered pairs must have parenthesis and a comma between the points.

A <u>relation</u> is a set of ordered pairs. You must use { } to show the **set** A relation can also be shown in a table or graph. The set of x-coordinates is the <u>domain</u>. The set of y-coordinates is the <u>range</u>.

|   | y  |    |    |  |   |
|---|----|----|----|--|---|
|   |    |    |    |  |   |
|   |    |    |    |  |   |
|   |    |    | В  |  |   |
|   | D, |    |    |  |   |
|   |    |    | C, |  |   |
|   |    |    |    |  |   |
|   |    |    |    |  |   |
| - |    | A, |    |  |   |
| Õ | ŕ  |    |    |  | X |

| - 4 | y |  |   |   |
|-----|---|--|---|---|
|     |   |  |   |   |
|     |   |  |   |   |
|     |   |  | A |   |
|     |   |  |   |   |
|     |   |  |   |   |
| _   |   |  |   | _ |
| Õ   | 1 |  |   | X |

Express the relation  $\{(0,0), (2,1), (4,2), (3,5)\}$  as a table and as a graph. Then determine the domain and range.



The domain is  $\{0, 2, 4, 3\}$ , and the range is  $\{0, 1, 2, 5\}$ .

## (1-5) Words, Equations, Tables, and Graphs

- <u>Function</u> relationship where one thing depends on another
- <u>Function Rule</u> gives the operation performed on the input
- <u>Function Table</u> a way to organize the input numbers, output numbers, and the function rule
- <u>Domain</u> the set of input values (shown inside "set" symbols
- <u>Range</u> the set of output values (shown inside "set" symbols
- <u>Equation</u> a mathematical sentence stating that two quantities are equal.

<u>Functions are often written as equations with two</u> <u>variables</u>—one to represent the input and one to represent the output.

Complete the following function table; then state the domain and range.

The team scores 6 points for each touchdown.

|                | Rule: | (Output) |
|----------------|-------|----------|
| $(\mathbf{x})$ | бx    | У        |
| 1              | 6(1)  | 6        |
| 2              | 6(2)  | 12       |
| 3              | 6(3)  | 18       |
| 4              | 6(4)  | 24       |

| Domain: | {1,2,3,4}    |
|---------|--------------|
| Range:  | {6,12,18,24} |

1-5 Words, Equations, Tables and Graphs

Suppose a student movie ticket costs \$4. Using two variables, write an equation to show the relationship between the number of tickets and the total cost.

Equation: ???

Make a function table that shows the total cost for 1,2,3 and 4 tickets. Then identify the domain and range.

| X | Rule: | У |
|---|-------|---|
|   |       |   |
|   |       |   |
|   |       |   |
|   |       |   |

Domain: \_\_\_\_\_\_ Range: \_\_\_\_\_

Page 35 #1-7