11-5 Polygons

A polygon is:

1) Closed figure
2) At least 3 sides
3) All sides are straight
4) Segments meet only at a vertex
5) Only 2 segments meet at a vertex

Polygons:

Not Polygons:

POLYGON	NUMBER OF SIDES	POLYGON	NUMBER OF SIDES
Triangle	3	Octagon	8
Quadrilateral	4	Nonagon	9
Pentagon	5	decagon	10
hexagon	6	undecagon	11
Heptagon	7	dodecagon	12

A diagonal is a line segment that joins two nonconsecutive vertices in a polygon.

Notice the number of triangles is two less than the number of sides. You can use this relationship to find the sum of the interior angle measures of a polygon.

An interior angle is an angle formed at a vertex of a polygon.

Interior Angles of a Polygon	
Words The sum of the degree measures of the interior angles of the polygon is the number of sides -2 times 180	Symbols

Find the sum of the measures of the interior angles of a nonagon.

$$
\begin{aligned}
\text { S of } m \text { of IA } & =180(n-2) & & \text { formula } \\
& =180(9-2) & & \text { substitute } \\
& =180(7) & & \text { simplify } \\
& =1260^{\circ} & & \text { answer with label }
\end{aligned}
$$

SHOW STEPS!! SHOW STEPS!! SHOW STEPS!! SHOW STEPS!!

Find the measure of an interior angle of a regular quadrilateral using the formula.

$$
\begin{aligned}
\text { S of } m \text { of } I A & =180(n-2) \\
& =180(4-2) \\
& =180(2) \\
& =360^{\circ}
\end{aligned}
$$

So.... $\frac{360}{4}=90^{\circ} \quad$ (total divided by \# of angles)
Each angle in a regular quadrilateral is 90°

Polygon	Number of Vertices (n)	Number of triangles	Angle Sum (m)
Triangle	3	1	$1(180)=180$
Quadrilateral	4	2	$2(180)=360$
Pentagon	5	3	$3(180)=540$
Hexagon	6	4	$4(180)=720$
Heptagon	7	5	$5(180)=900$
\ldots	\ldots	\ldots	\ldots
decagon	10	8	$8(180)=1440$
100 -gon	100	$?$	$?$
n-gon	\mathbf{n}	$\mathbf{n - 2}$	$\mathbf{(n - 2) 1 8 0}$

